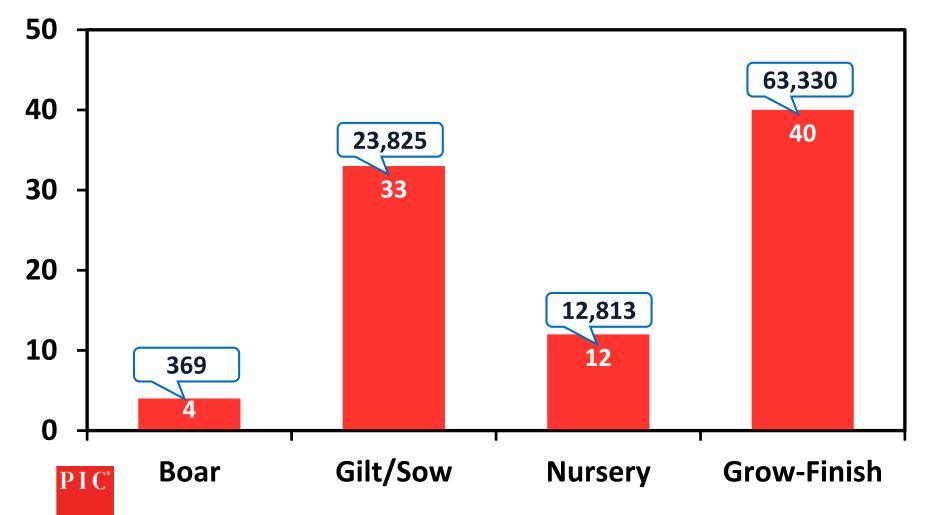


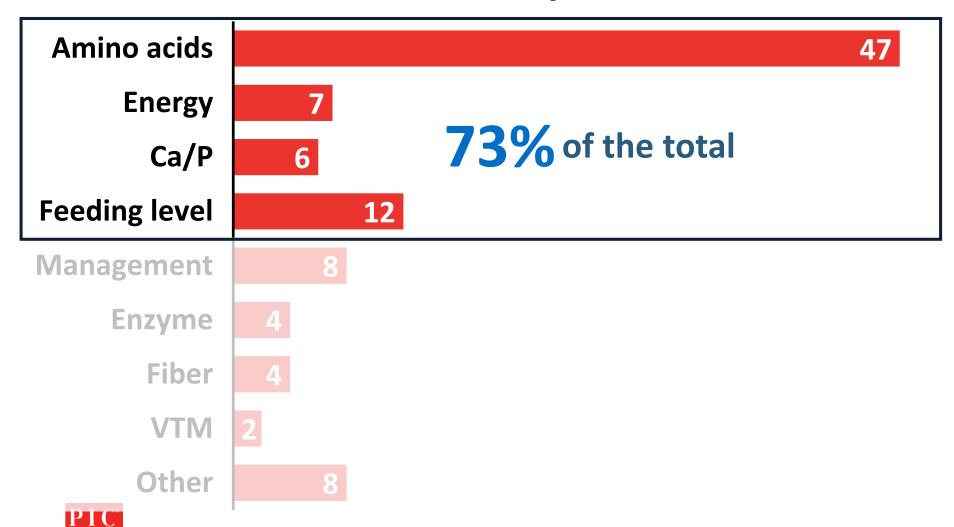
Nutrition Team Structure

Nutrition Team Structure: Goal

PIC strives to make our customers the most

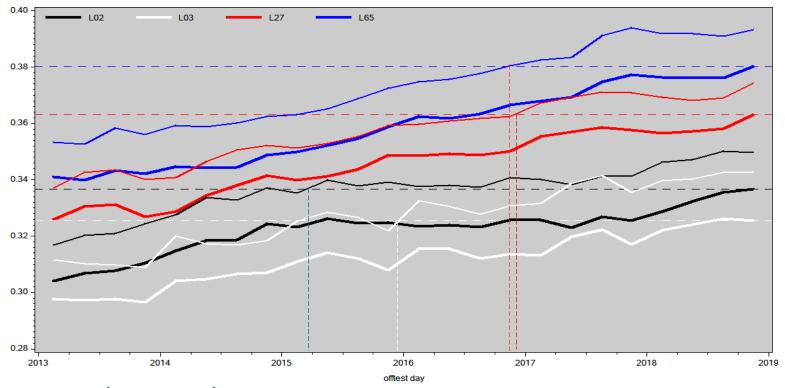

successful pig producers in the world!

Nutrition trials (2016-2020)


A total of 89 trials involved with 100,337 PIC animals

Nutrition trials (2016-2020)

Research Topics



High index boar

- Camborough sows bred with semen from top 10% high-index boars
- 1,200 piglets from high-index boars
- Treatments: 85, 95, 105, 115, and 125% of PIC 2016 SID Lys

Awaiting data-analysis

SID Lys titration for Camborough barrows

- PIC/CISS/PSM
- 2,400 Camborough barrows will be used
- Treatments: 85, 93, 100, 107, and 115% of PIC 2016 SID Lys for barrows

Phase	Room 1	Room 2		
N3	Trial N3	Washout		
F1	Washout	Trial F1		
F2	Trial F2	Washout		
F3	Washout	Trial F3		
F4	Trial F4	Washout		
F5	Washout	Trial F5		

Ongoing

Nutrition plan for PIC 800 pigs

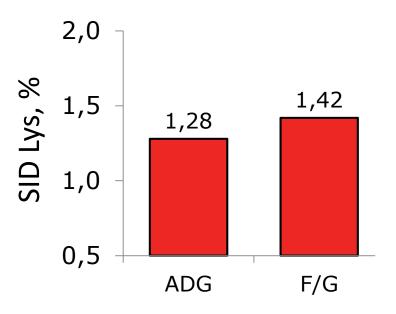
- PIC/Reicksview/SVC
- 1,000 (Camborough x PIC 800) barrows and gilts will be used
- Treatments: 87, 95, 103, and 111% of PIC 2016 SID Lys curve

SID Lys, % of the diet								
	Phase							
TRT	N3	F1	F2	F3	F4	F5	F6	
Α	1.20	1.07	0.95	0.86	0.76	0.69	0.65	
В	1.31	1.17	1.03	0.94	0.84	0.76	0.71	
С	1.42	1.27	1.12	1.02	0.91	0.82	0.77	
D	1.53	1.37	1.21	1.10	0.98	0.89	0.83	
PIC 2016 (100%)	1.38	1.24	1.09	0.99	0.88	0.80	0.75	

Ongoing

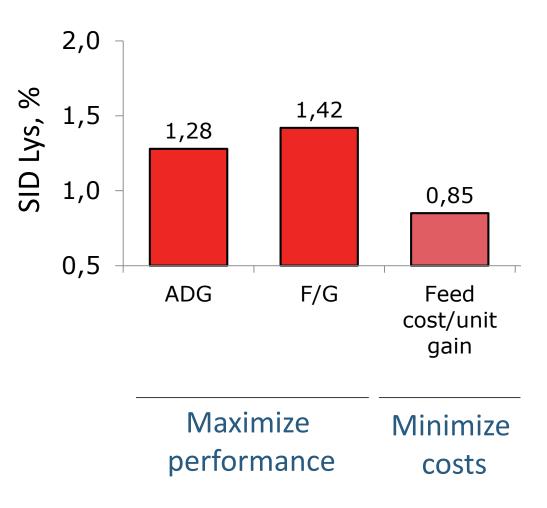
Immunocastrated pigs

- PIC/AGPIC/Agroceres multimix
- **Project 1:** To determine the differences in W2F performance of two breeding levels, two deviations apart, and three sex categories (intact gilts, immunocastrated barrows, and immunocastrated gilts)
- **Project 2:** To determine the SID Lys requirements of intact boars, gilts, and immunocastrated barrows from 12 to 125 kg.
- Treatments: 80, 90, 100, 110, and 120% of PIC 2016 SID Lys requirement for gilts, barrows, and boars
- Planning



PIC Nutrition Tools

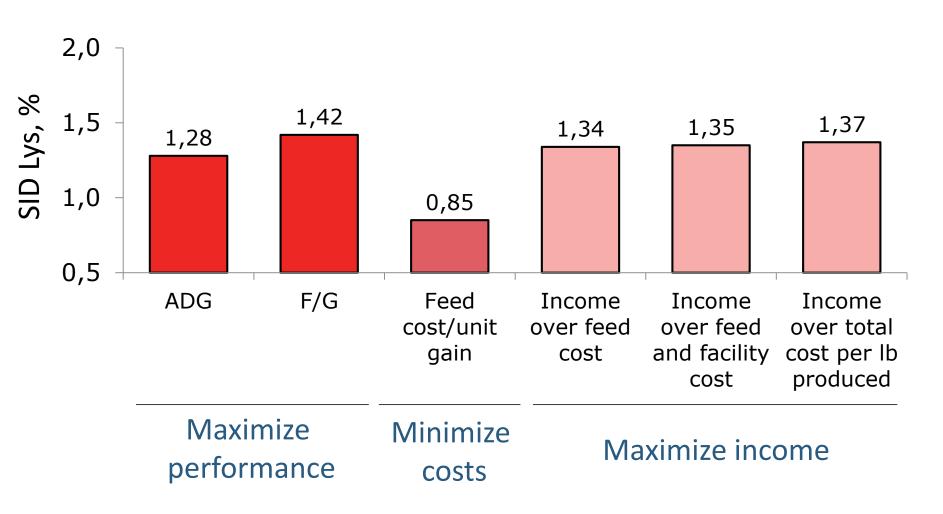
Different approaches for diet formulation



Maximize performance

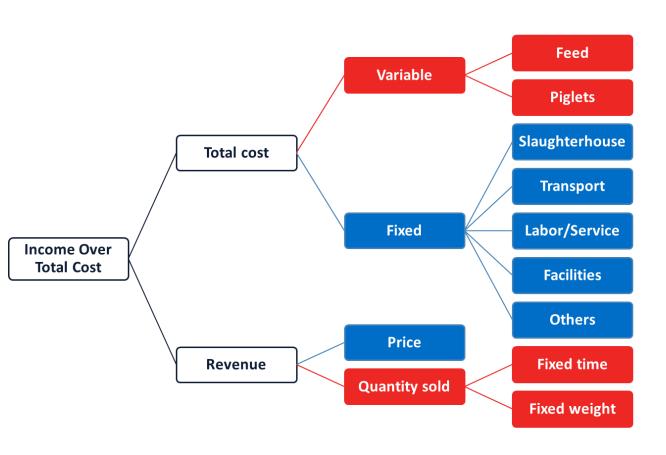
Exemples of SID Lys levels to optimize different criteria for PIC pigs (20 to 25 kg pigs; PIC internal data).

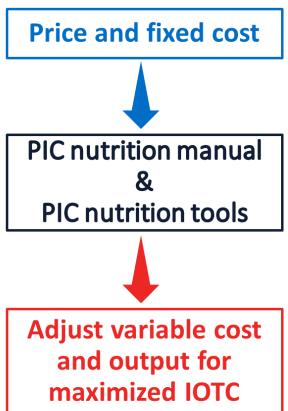
Different approaches for diet formulation



Exemples of SID Lys levels to optimize different criteria for PIC pigs (20 to 25 kg pigs; PIC internal data).

Different approaches for diet formulation




Exemples of SID Lys levels to optimize different criteria for PIC pigs (20 to 25 kg pigs; PIC internal data).

Tools

Maximizing Income Over Total Cost

Tools

Tough times ahead?

- If the pig has adequate nutrient access
 - Look hard at energy

- we have a tool!

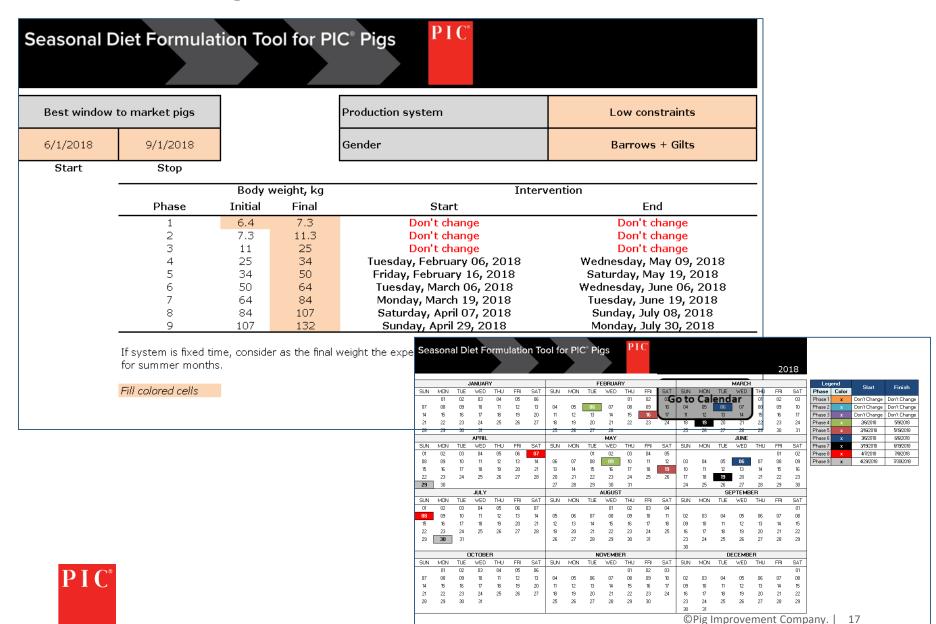
Look hard at lysine levels

- we have a tool!

of total feed cost covered

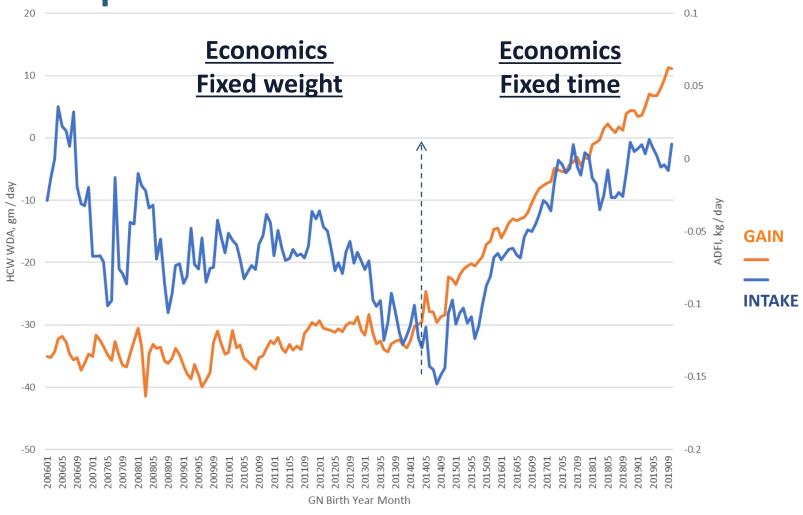
Look hard at P levels

- we have a tool!


Seasonality formulation

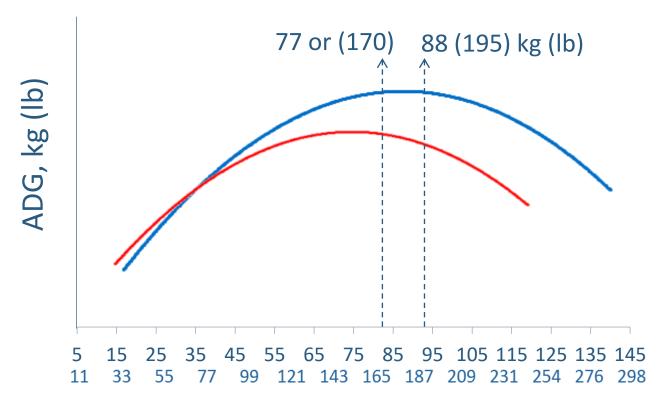
- we have a tool!
- Available at https://gb.pic.com/resources/

Seasonality tool



Genetic development and nutrient requirements changes

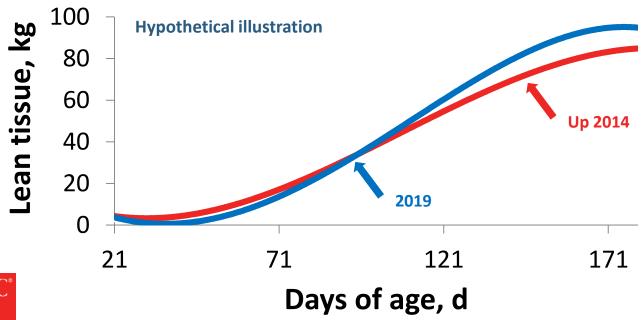
Improvement in FCR since 2006



Genetic development and nutrient requirements changes

Body Weight at Maximum Protein Deposition

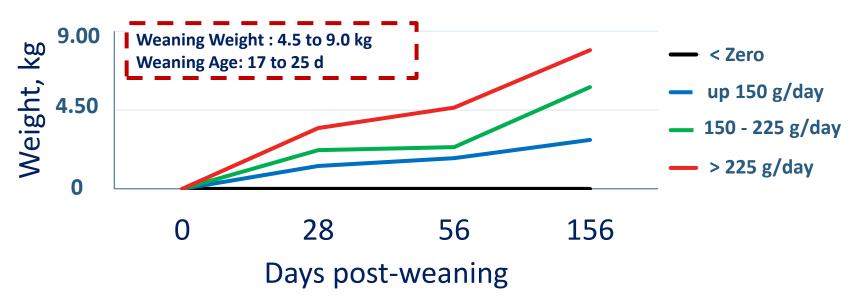
Estimated based in the growth curves of 337 in 2007 and 2016


Body weight, kg (lb)

Genetic development and nutrient requirements changes

Growth rate: Late performance

- 1. Selection to a leaner pig at a heavier BW
- 2. Poorer performance in the early stages of life

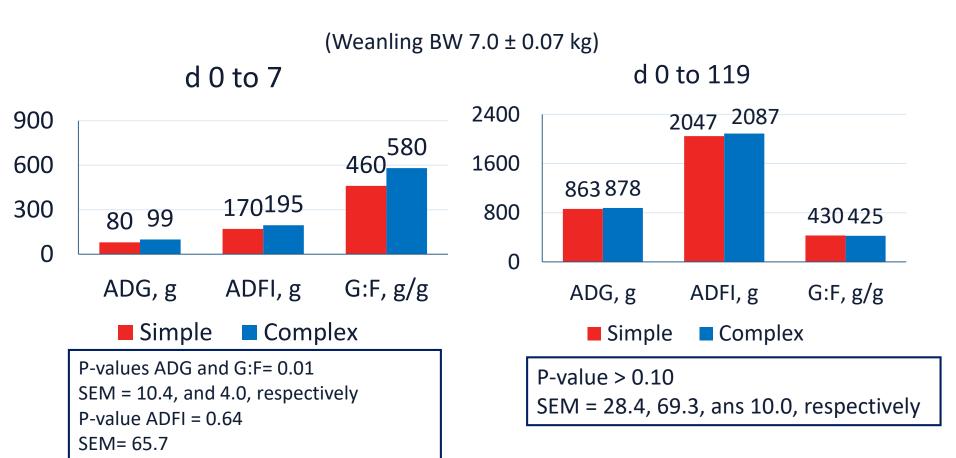

Wean to finish pigs **Nursery diet complexity**

Never Stop Improving

Post-weaning period

General rule: pigs that grow faster in the nursery also grow faster in the finisher.

Weight advantage based on the growth rate during the first week post weaning



Nursery diet complexity

Influence of Diet Complexity on Subsequent Performance

Nursery diet complexity

Diet Complexity on Performance and Economics of nursery pigs

- 1,296 weanling pigs (PIC 337 × Camborough, initially BW 5.8±0.10 kg)
- Phase 1 for 10 d and phase 2 for 10 d
- A common diet after d 20 post-weaning

	Phase 1	(d 0 to 10)	Phase 2 (d 0 to 10)		
	Simple	Complex	Simple	Complex	
Soybean Meal, %	20.0	12.0	26.0	20.0	
Lactose, %	12.0	20.0	6.2	12.3	
Specialty proteins, %	8.7	12.8	5.0	7.5	
SID Lys, %	1.46	1.46	1.42	1.42	
Phytase, FTU/kg	2,000	500	2,000	500	

Nursery diet complexity

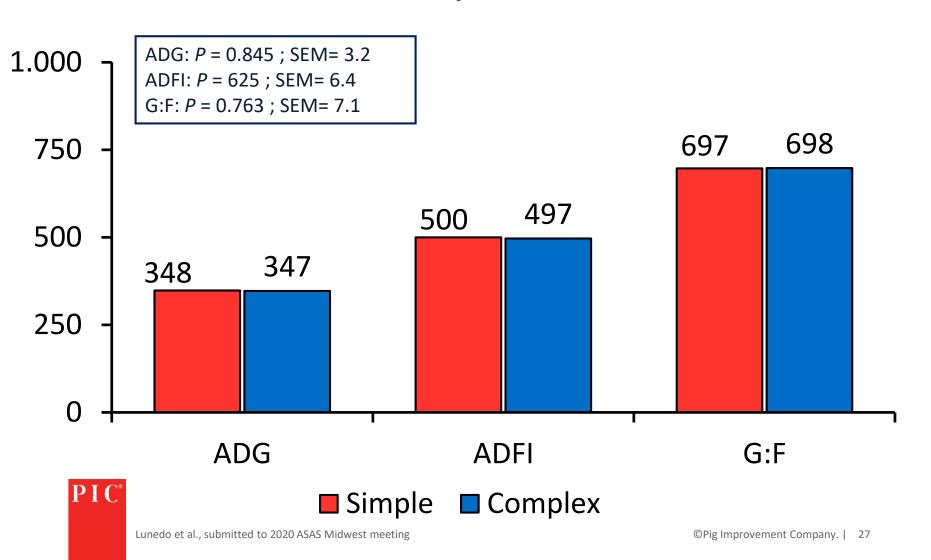
Treatment diets, d 0 to 20

Common diet, d 20 to 42

Means with different superscripts within variable differ

ADG: *P* < 0.001; SEM= 3.4

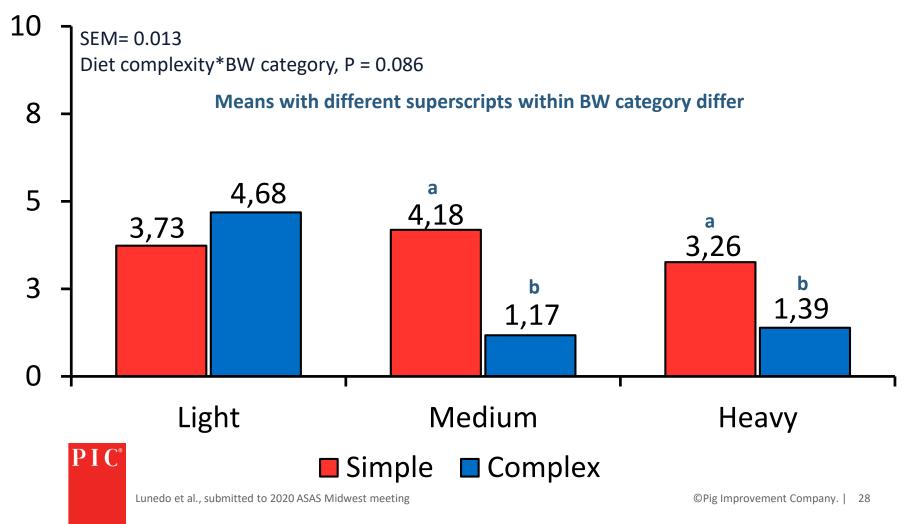
ADFI: P = 0.045; SEM= 4.4


G:F: P = 0.062; SEM= 23.0

ADG: P = 0.001; SEM= 4.0 ADFI: P = 0.011; SEM= 8.4 G:F: P = 0.019; SEM= 6.0

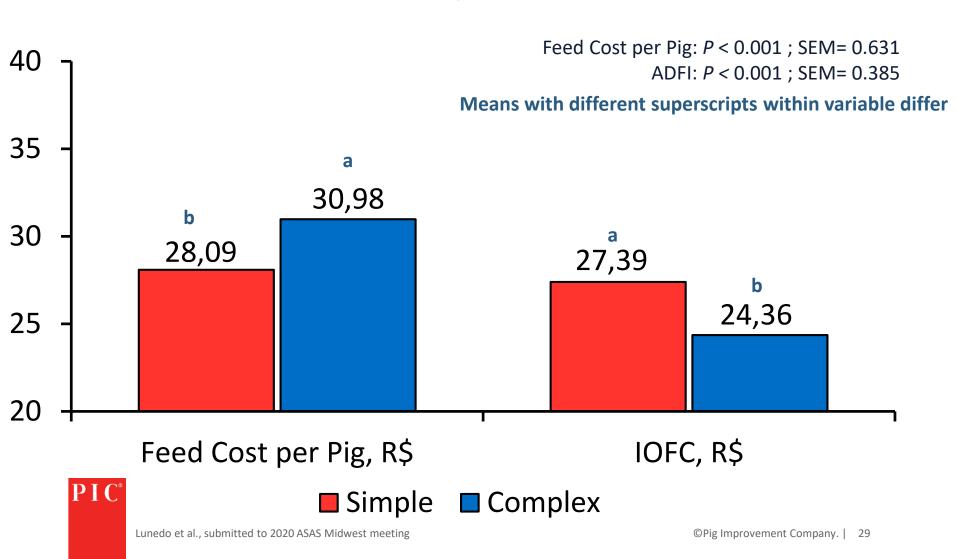
Nursery diet complexity

Overall, d 0 to 42

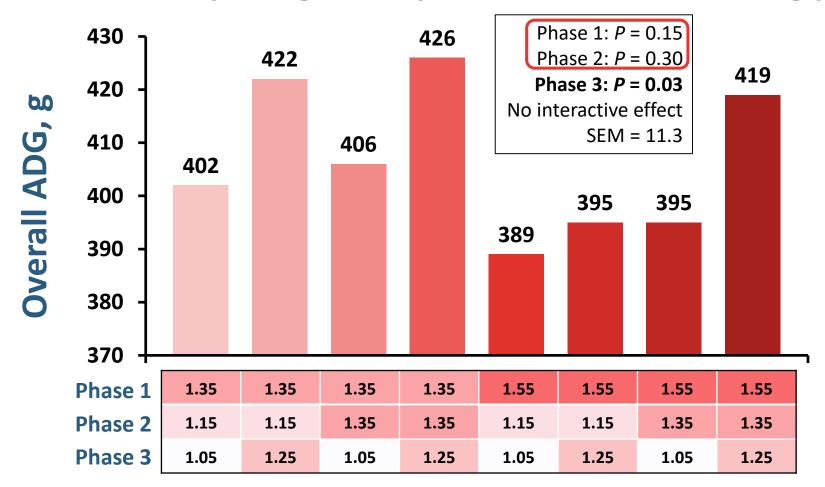


Nursery diet complexity

Mortality + removal rate, %

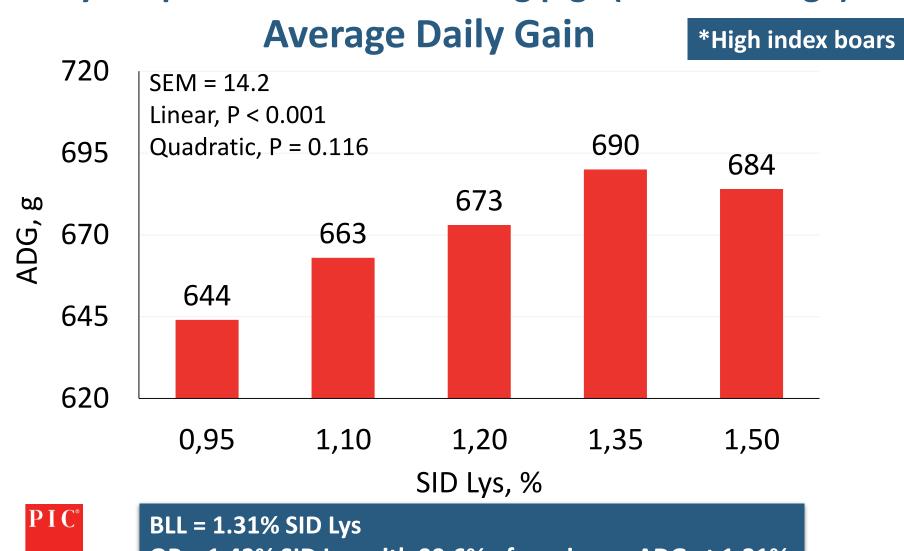

We couldn't analyze mortality alone because only 5 pig died

Wean to finish pigs Nursery diet complexity


Overall, d 0 to 42

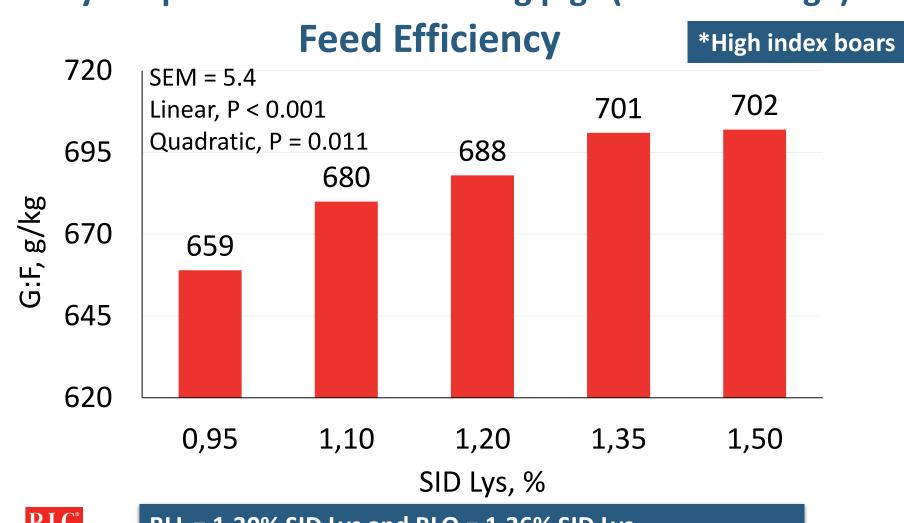
Amino Acids

Effects of SID Lys on growth performance of weanling pigs



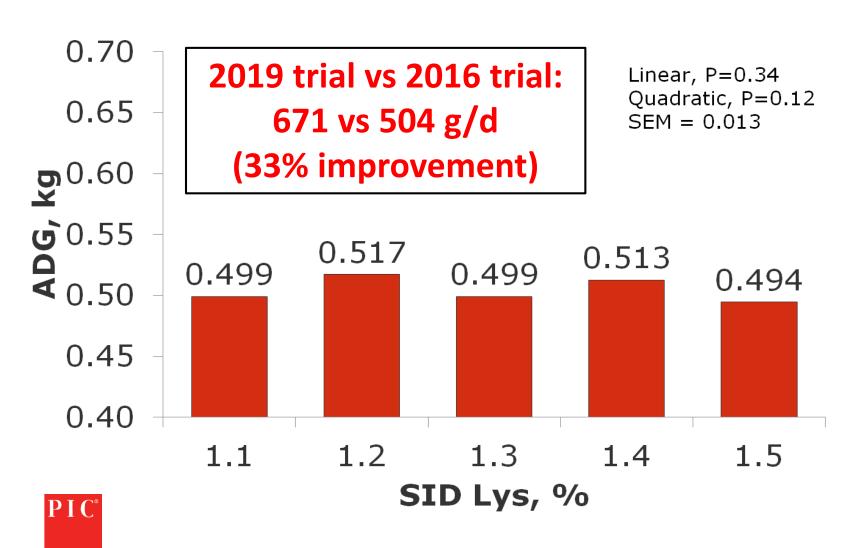
SID Lysine, %

Amino Acids


SID Lys requirement of 12 to 26 kg pigs (42 to 63 d age)*

Amino Acids

SID Lys requirement of 12 to 26 kg pigs (42 to 63 d age)*


PIC°

BLL = 1.30% SID Lys and BLQ = 1.36% SID Lys QP = 1.48% SID Lys with 99.4% of maximum ADG at 1.31%

Amino Acids

SID Lys for 11-23 kg PIC pigs (2016)

Never Stop Improving

Nursery diet complexity and Amino Acids

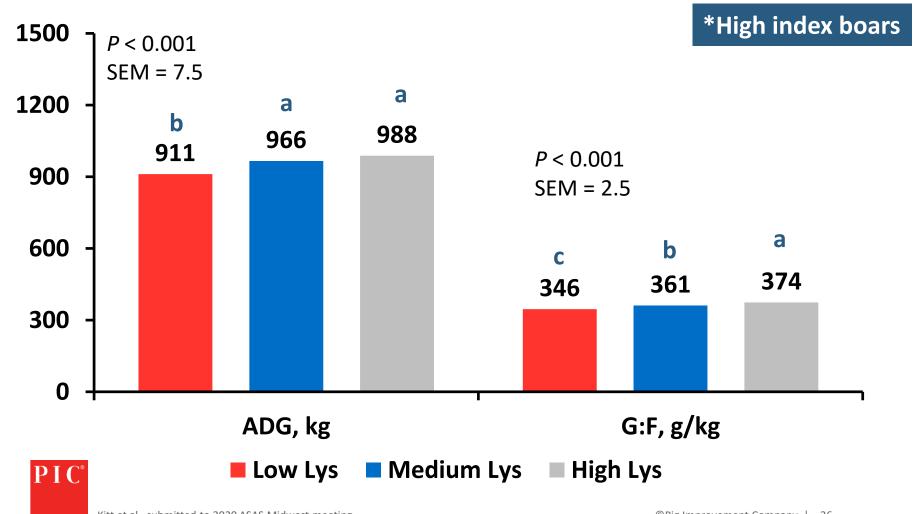
Influence of Diet Complexity on Subsequent Performance

- Early life growth multipliers
 - Birth weight Consistently improvement in PIC since 2014
 - Weaning age Main et al., 2004
 - Weaning weight Wolter and Ellis, 2001; Schinckel et al., 2007; Collins et al., 2017
- Non multipliers
 - Diet Complexity Whang et al, 2000; Wolter et al., 2003; Skinner et al., 2014
 - Added fat Tokach et al., 1996
 - Amino acids Fabian et al., 2002; Nemechek et al., 2012
 - Antibiotics Skinner et al., 2014
 - Supplemental milk Wolter and Ellis, 2001

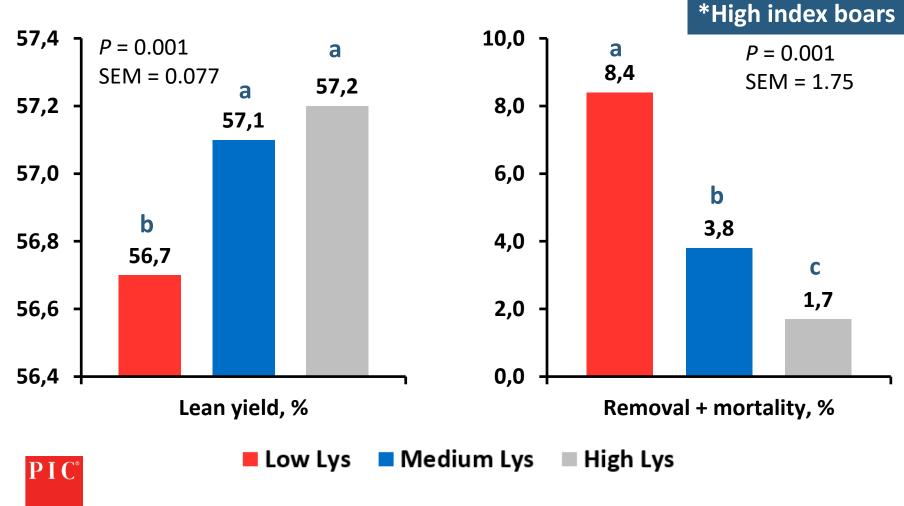
Wean to finish pigs **Energy and amino acids**

Effects of SID Lys levels on performance of 29 to 129 kg pigs*

*High index boars


- A total of 1,013 PIC (337 X Camborough) barrows and gilts were used in a 112-d trial
- Dietary energy level kept the same across treatments
- A total of 6 dietary phases
- Dietary treatments
 - Low Lys: overall SID Lys levels as 87% of PIC2016 requirement
 - Medium Lys: overall SID Lys levels as 97% of PIC2016 requirement
 - High Lys: overall SID Lys levels as 106% of PIC2016 requirement

Energy and amino acids


Effects of SID Lys levels on performance of 29 to 129 kg pigs*

Energy and amino acids

Effects of SID Lys levels on performance of 29 to 129 kg pigs*

Lysine tool

Amino Acid Requirements

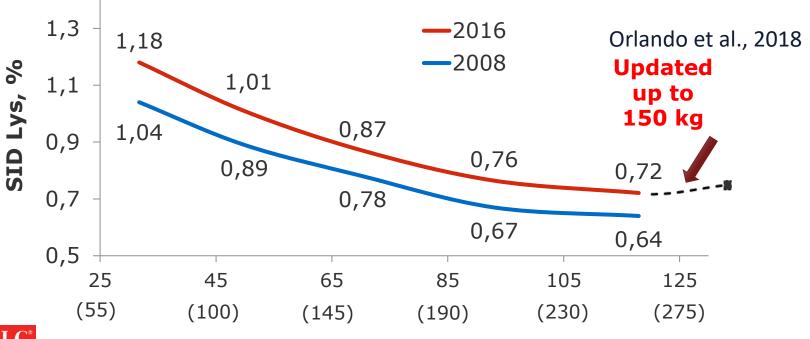
- ✓ Lysine is the first limiting AA
 - ✓ The amount of lysine to make 1 kg of body weight gain is virtually the same over the years

Improved growth rate

Improved feed efficiency

Overtime there is a need to concentrate the diets to unlock genetic potential

Lysine tool

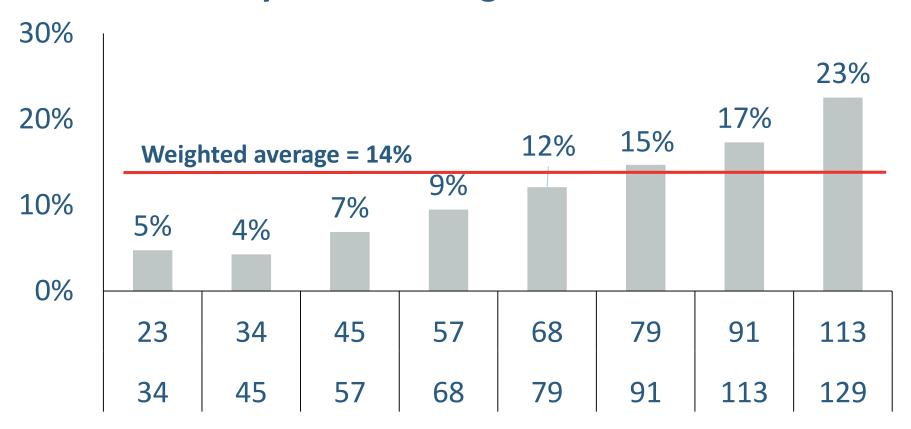

Amino Acid Requirements

Meta-analysis

28 commercial experiments, with a total of 46,092 pigs.

Average of barrows and gilts, average of ADG and F/G.

2,440 kcal NE/kg (1,107 Kcal NE/lb)



Body weight, kg (lb)

SID Lysine recommendations for PIC boars

% of SID Lys for boars is greater than barrows

Body weight, kg

Amino Acids

Lysine – example biological tool

PIC°

Lysine requirement for PIC pigs

Energy level, NRC NE kcal/lb Weight In, lb Weight Out, lb

1150	1167	1180	1185	1195	1182
50	75	103	141	180	212
75	103	141	180	212	300

SID Lys:Cal NE

Barrows

Gilts

Boars

4.83	4.37	3.88	3.42	3.11	2.83
5.08	4.55	4.00	3.52	3.22	3.03
5.08	4.62	4.23	3.87	3.63	3.48

SID Lys % (NE equation)

Barrows

Gilts

Boars

Barrows and Gilts

Boars and Gilts

1.22	1.12	1.01	0.89	0.82	0.74
1.29	1.17	1.04	0.92	0.85	0.79
1.29	1.19	1.10	1.01	0.96	0.91
1.26	1.15	1.02	0.91	0.83	0.76
1.29	1.18	1.07	0.97	0.90	0.85

Amino Acids

Current diets

Lysine – example economic tool

Economic model for optimum lysine for PIC pigs

Input (please fill beige cells)

Gender Live pig price, \$/cwt Feeder pig cost, \$/pig Facility cost, \$/pig/day Other costs, \$/pig

Barrows and gilts						
	\$62.96					
	\$44.37					
	\$0.12					
	\$14.00					

	BW, lb		Energy, kcal NE/lb	SID Lys, %	\$/ton	SID Lys, %	\$/ton
	50	75	1,150	1.26	\$219	1.18	\$213
	75	103	1,167	1.15	\$211	1.07	\$204
	103	141	1,180	1.02	\$201	0.96	\$197
	141	180	1,185	0.91	\$194	0.86	\$189
	180	212	1,195	0.83	\$187	0.78	\$184
	212	300	1,182	0.76	\$182	0.72	\$178
Output							
% of maxir	num ADG			100.0%		97.99	%
% of maxir	num feed	efficiency		98.7%		96.99	%
Net profit difference, \$/pig							
Fixed time (space short)			+1.51		-1.5	1	
Fixed we	ight (space	e long)		+	0.02	-0.0	2

Biological requirement

Never Stop Improving

Amino Acids

Lysine requirements between PIC lines

- Are there biological differences? Probably yes.
- Are they meaningful? It has been hard to document an economically meaningful difference.

Estimated¹ weighed SID Lys requirement as % of 337:

Dataset	n	337	327	280	380	408	410	280	8.0
1	> 7k	100	99	97	99	98	99	97	
2	>100k	100	100	97	98	99		97	97

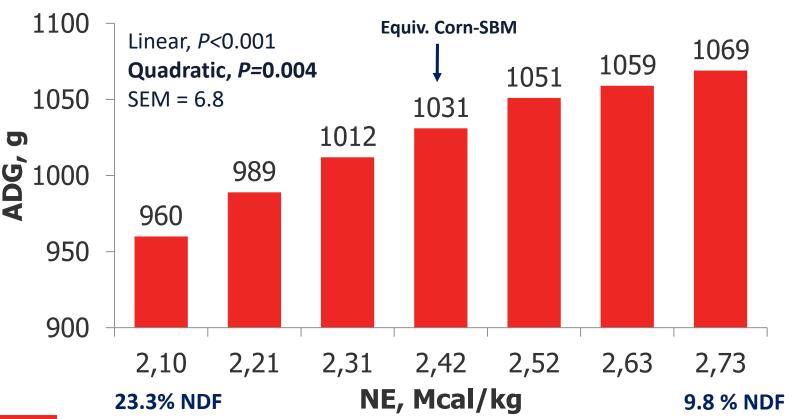
¹Estimated using actual ADFI and F/G relative differences for each line and assuming 19 g of SID Lys per kg of gain using 2016 PIC Lys requirement as baseline. Market weight: 290 lb.

Energy and fiber

Effects of dietary NE and NDF levels on growth performance of 30 to 135 kg pigs

- A total of 2,058 PIC (380 X Camborough) barrows and gilts were used in a 97-d trial.
- SID Lysine: NE ratio kept the same across treatments

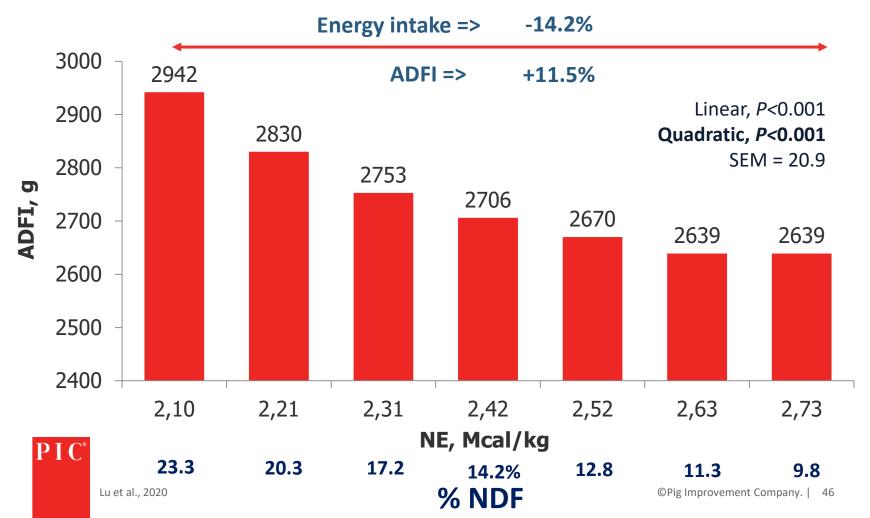
Net energy, Mcal/kg	2.11	2.21	2.32	2.42	2.52	2.63	2.73
NDF, %	23.3	20.3	17.2	14.3	12.8	11.3	9.8



Energy and fiber

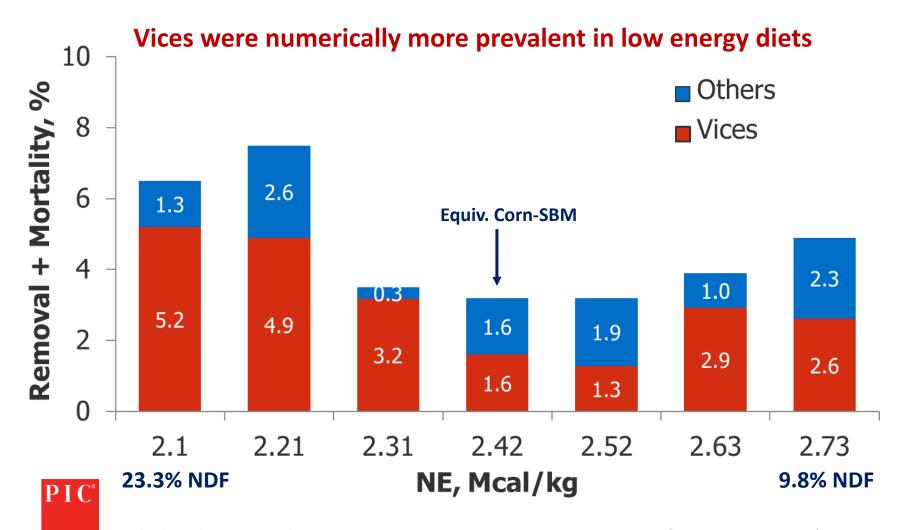
Effects of NE and NDF on growth performance of 30 to 135 kg pigs

Overall ADG – 30 to 130 kg (d 0-97)



Wean to finish pigs Energy and fiber

Effects of NE and NDF on growth performance of 30 to 135 kg pigs


Overall ADFI— 30 to 130 kg (d 0-97)

Wean to finish pigs **Energy and fiber**

Effects of NE and NDF on growth performance of 30 to 135 kg pigs



Wean to finish pigs **Energy by fat/oil**

Effects of added fat on ADFI of grow-finish pigs under commercial conditions

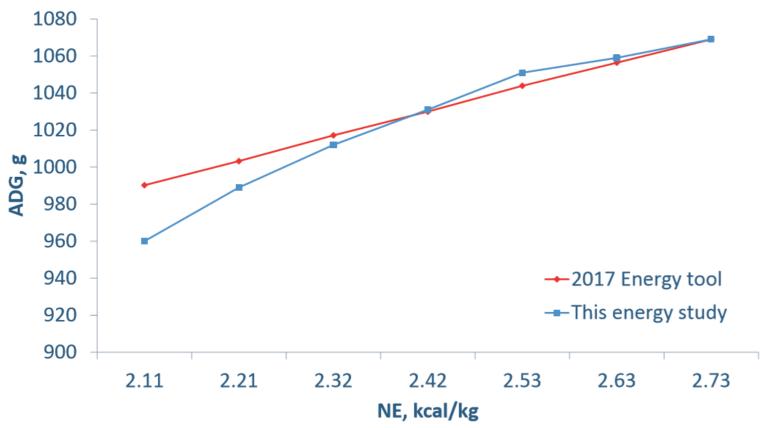
Overall ADFI – 40 to 130 kg (114 days)

Energy tool

PIC/KSU Optimum Energy Tool

Meta-analysis by Nitikanchana et al. (2015) to predict performance (based on 41 studies)

Meta-analysis by Soto et al. (2016) to predict the NDF impact on carcass yield (based on 8 studies)



Energy tool

ADG Prediction

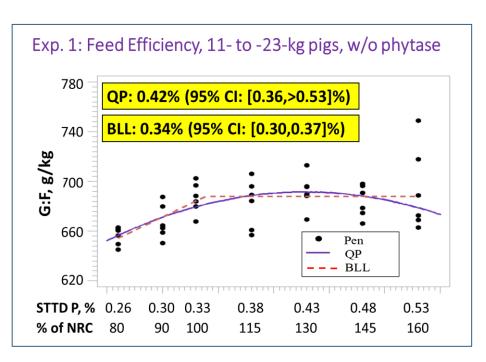
Above 2.3 Mcal NE/kg (3.06 kcal ME/kg), residual error was 1 gram (-6 g overall)

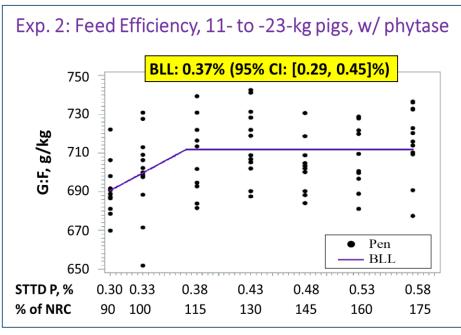
Energy tool

USA

Live price, \$/lb	0.38
Carcass price, \$/lb	0.50

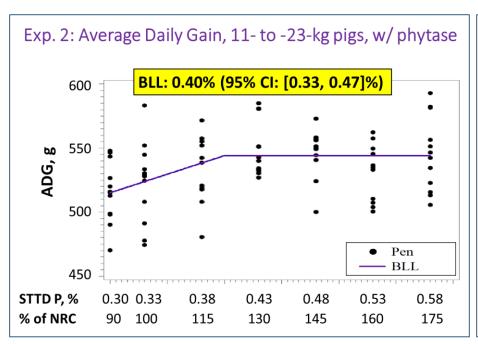
Dietary _	Net en	Change, %	
Phase	Current	Change, 70	
Ph 1	1,104	1,083	(1.9)
Ph 2	1,122	1,097	(2.3)
Ph 3	1,130	1,110	(1.8)
Ph 4	1,145	1,119	(2.3)
Ph 5	1,150	1,126	(2.1)
Ph 6	1,140	1,140	0.0

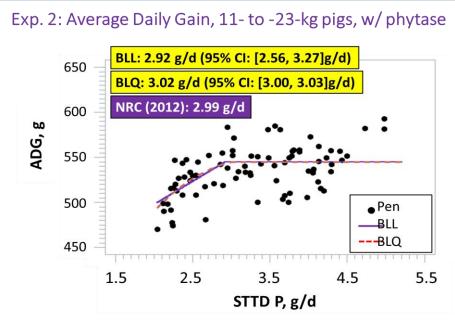

Metrics	Current	Recommended
Total feed cost, \$/pig	53.01	48.37
Total feed cost & facility cost, \$/pig	64.89	60.25 🕈
Gross Income, \$/pig	108.30	107.89
IOTC Carcass, \$/pig	-16.29	-12.34
Diff., \$/pig		3.95



Calcium and phosphorus

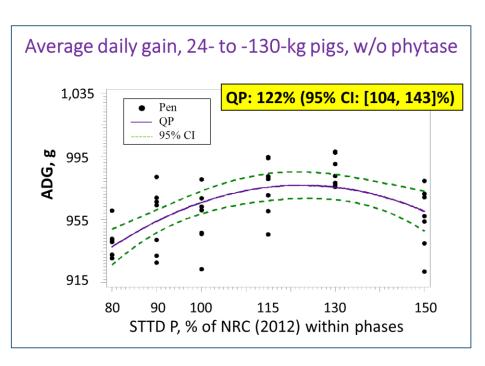
Effects of STTD P levels on growth performance of 11- to 23- kg pigs

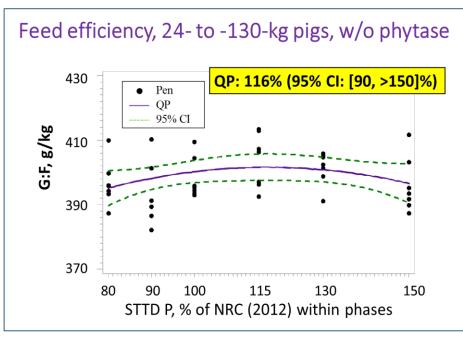




Calcium and phosphorus

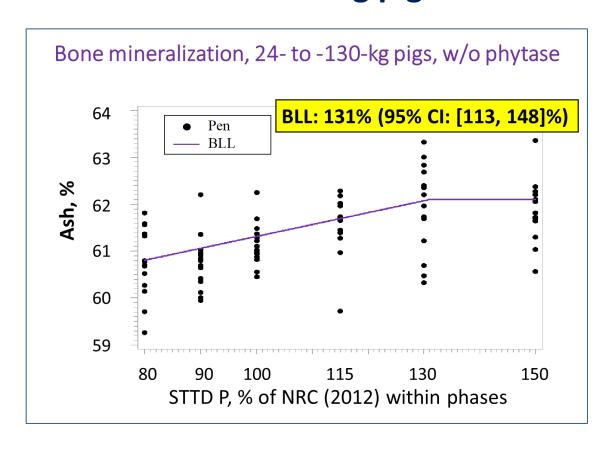
Effects of STTD P levels on growth performance of 11- to 23- kg pigs





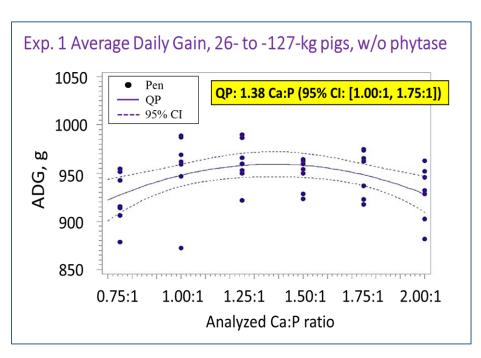
Calcium and phosphorus

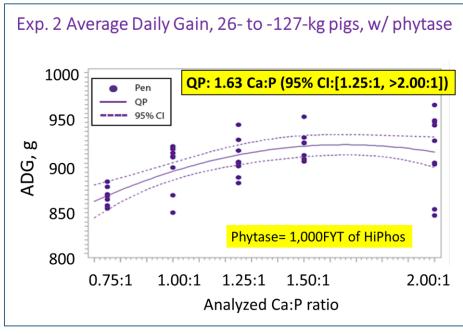
Effects of STTD P levels on growth performance of 24- to 130- kg pigs



Calcium and phosphorus

Effects of STTD P levels on growth performance of 24- to 130- kg pigs

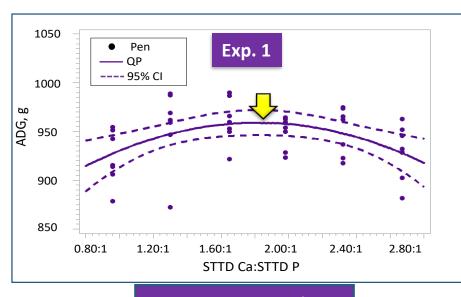


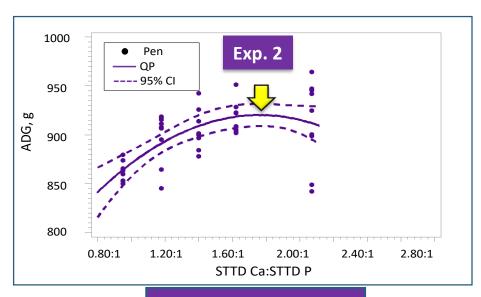


Calcium and phosphorus

Calcium to phosphorus ratio requirement of 26- to 127-kg pigs

Calcium and phosphorus


Calcium to phosphorus ratio requirement of 26- to 127-kg pigs


QP: 1.75:1 STTD Ca:STTD P

(95%CI:1.40:1,>2.07:1)

QP: 1.82:1 STTD Ca:STTD P

(95% CI: 1.30:1,2.31:1)

Bone: 99.5%

Bone: 100%

Phosphorus

Updated STTD Phosphorus requirements, %

Itom	Body weight, kg						
ltem	23-41	41-59	59-82	82-104	104-129		
Terminal Gilts							
PIC2016	0.33	0.30	0.28	0.26	0.24		
PIC2020	0.40	0.37	0.33	0.29	0.25		
Barrows							
PIC2016	0.33	0.30	0.27	0.25	0.24		
PIC2020	0.37	0.34	0.31	0.28	0.24		
Replacement Gilts							
PIC2016	0.35	0.35	0.35	0.35	0.35		
PIC2020	0.42	0.38	0.34	0.30	0.26		

STTD: Standardized Total Tract Digestible

Phosphorus

Updated Available Phosphorus requirements, %

ltom	Body weight, kg						
ltem	23-41	41-59	59-82	82-104	104-129		
Terminal Gilts							
PIC2016	0.30	0.28	0.26	0.25	0.24		
PIC2020	0.34	0.31	0.28	0.24	0.22		
Barrows							
PIC2016	0.30	0.28	0.26	0.25	0.24		
PIC2020	0.32	0.29	0.26	0.23	0.21		
Replacement Gilts							
PIC2016	0.35	0.35	0.35	0.35	0.35		
PIC2020	0.35	0.32	0.29	0.25	0.23		

Never Stop Improving

Calcium and phosphorus

Phosphorus - example economic STTD P tool

Economic model for optimum phosphorus levels

Input (please fill yellow cells)

Economic evaluation criteria Carcass price, \$/kg Current carcass yield, % Facility cost, \$/pig/day Number of phases

Carcass
\$1.43
73.4
\$0.12
6

Current diets

Maximal growth

			carrent diets			
	BW, kg		Energy, kcal NE/kg	STTD P, %	\$/ton	
Phase 1	25.0	34.0	2,425	0.33	\$173.65	
Phase 2	34.0	50.0	2,449	0.30	\$166.98	
Phase 3	50.0	64.0	2,482	0.27	\$160.96	
Phase 4	64.0	84.0	2,509	0.26	\$155.51	
Phase 5	84.0	107.0	2,549	0.23	\$153.23	
Phase 6	107.0	129.0	2,564	0.21	\$152.78	

MIGNITION STOWER						
STTD P, %	\$/ton					
0.40	\$174.03					
0.37	\$167.22					
0.34	\$161.15					
0.31	\$155.65					
0.28	\$153.32					
0.25	\$152.92					

Calcium and phosphorus

Phosphorus - example economic STTD P tool

Low carcass value \$1.08/kg

Economics Output Net profit difference between maximal growth and current diets, \$/pig Fixed Weight (space long) -\$0.07 IOFFC Fixed Time (space short) \$0.18 IOFC

Moderate carcass value \$1.43/kg

Economics Output						
Net profit difference between maximal growth and current diets, \$/pig						
Fixed Weight (space long)						
IOFFC	-\$0.07					
Fixed Time (space short))					
IOFC	\$0.36					

High carcass value \$1.81/kg

	Net profit difference between maxima growth and current diets, \$/pig						
	Fixed Weight (space long)						
	IOFFC	-\$0.07					
	Fixed Time (space short)						
	IOFC	\$0.57					

Worth \$0.18/pig on a fixed time situation

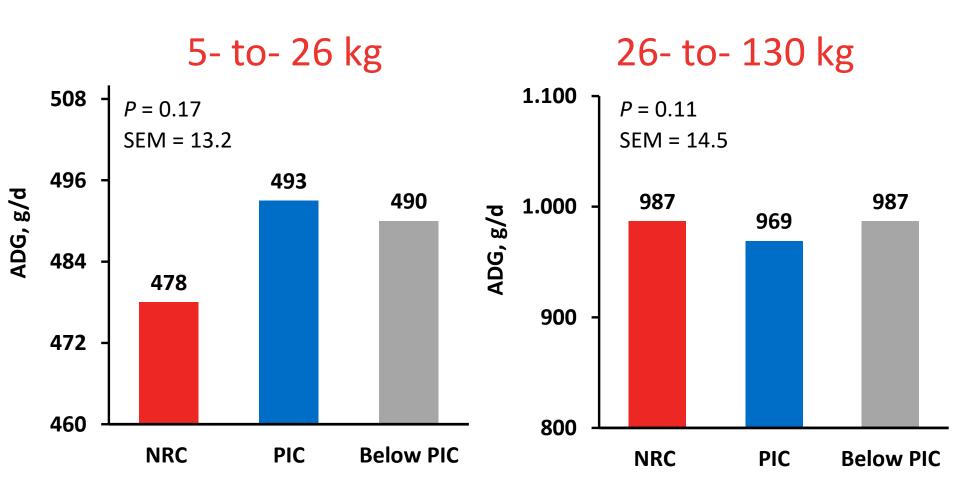
Worth \$0.36/pig on a fixed time situation

Worth \$0.57/pig on a fixed time situation

Vitamins

Effects of different added vitamin levels on growth performance of 5 to 130 kg pigs

A total of 900 PIC (PIC337 X Camborough) barrows and gilts


Treatment	ſ	NRC PIC 20		PIC 2016	6		Below PIC 2016	
Bodyweight range, lb	11-55	55 - 287	11-55	55 - 176	176 - 287	11-55	55 - 176	176 - 287
Vitamin A, IU	2200	1300	11025	6615	5510	4200	2800	2800
Vitamin D ₃ , IU	220	150	1765	1215	1015	1600	800	640
Vitamin E, IU	16	11	85	33	28	16	11	11
Vitamin K, mg	0.5	0.5	5.5	3.3	2.8	3.0	1.5	1.2
Thiamin, mg	1.0	1.0	3.5					
Riboflavin, mg	3.5	2.0	13.0	5.7	4.9	8.0	4.0	3.0
Pyridoxine, mg	7.0	1.0	7.0					
Vitamin Β ₁₂ , μg	17.5	5	0.055	0.026	0.022	0.039	0.019	0.015
Niacin, mg	30	30	70	40	31	50	25	20
d-Pantothenic acid, mg	10	7	40	20	17	28	14	11
Folic acid, mg	0.3	0.3	1.05					
Biotin, mg	0.05	0.05	0.275					

Vitamins

Effects of different added vitamin levels on growth performance of 5 to 130 kg pigs

Updated vitamin recommendations

Treatment	NRC		PIC 2016			Below PIC 2016		
Bodyweight range, lb	11-55	55 - 287	11-55	55 - 176	176 - 287	11-55	55 - 176	176 - 287
Vitamin A, IU	2200	1300	11025	6615	5510	4200	2800	2800
Vitamin D ₃ , IU	220	150	1765	1215	1015	1600	800	640
Vitamin E, IU	16	11	85	33	28	16	11	11
Vitamin K, mg	0.5	0.5	5.5	3.3	2.8	3.0	1.5	1.2
Thiamin, mg	1.0	1.0	3.5					
Riboflavin, mg	3.5	2.0	13.0	5.7	4.9	8.0	4.0	3.0
Pyridoxine, mg	7.0	1.0	7.0					
Vitamin Β ₁₂ , μg	17.5	5	0.055	0.026	0.022	0.039	0.019	0.015
Niacin, mg	30	30	70	40	31	50	25	20
d-Pantothenic acid, mg	10	7	40	20	17	28	14	11
Folic acid, mg	0.3	0.3	1.05					
Biotin, mg	0.05	0.05	0.275					

Red columns represent the new PIC recommendations

